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Abstract

We study reduction of generalized complex structures. More precisely, we investigate the following question. Let J be a
generalized complex structure on a manifold M , which admits an action of a Lie group G preserving J . Assume that M0 is a
G-invariant smooth submanifold and the G-action on M0 is proper and free so that MG := M0/G is a smooth manifold. Under
what condition does J descend to a generalized complex structure on MG? We describe a sufficient condition for the reduction
to hold, which includes the Marsden–Weinstein reduction of symplectic manifolds and the reduction of the complex structures in
Kähler manifolds as special cases. As an application, we study reduction of generalized Kähler manifolds.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Generalized complex structures [13,10] have been extensively studied recently due to their close connection with
mirror symmetry. They include both symplectic and complex structures as extreme cases.

As is well known in symplectic geometry, a useful way of producing new symplectic manifolds is via the so called
Marsden–Weinstein reduction [23]. This is a procedure for constructing symplectic manifolds from a Hamiltonian
system with symmetry admitting a momentum map. Let us recall this construction briefly below. Suppose we are given
a symplectic manifold (M, ω), an action of a Lie group G on M preserving the symplectic form, and an equivariant
momentum map µ : M → g∗, i.e. µ satisfies the relations

µ(g · x) = Ad∗g−1 µ(x), ∀g ∈ G, x ∈ M

and

Âyω = d〈µ, A〉, ∀A ∈ g,

where Â denotes the fundamental vector field generated by A ∈ g. Assume that 0 is a regular value of the momentum
map µ so that the preimage M0 = µ−1(0) is a G-invariant smooth submanifold. Moreover, if we assume that the
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G-action on M0 is free and proper so that MG = M0/G is a smooth manifold, then it inherits a natural symplectic
structure [23] (see [27] for the symplectic reduction in the singular case). In the context of Poisson manifolds, a
reduction procedure was carried out by Marsden and Ratiu [24] and Ortega and Ratiu for the singular case [25].
See [26] for a beautiful comprehensive study on Hamiltonian reductions.

On the other hand, since there is no such notion of momentum maps for complex manifolds, there does not exist
a general scheme of reduction of G-invariant complex structures in the literature as far as we know. However, for a
G-invariant Kähler manifold which admits an equivariant momentum map for the symplectic structure, one can prove
that the complex structure can also descend to the symplectic reduced space MG = M0/G so that MG becomes a
Kähler manifold. This is the so called Kähler reduction.

There are several versions of Kähler reduction, which were due to Guillemin and Sternberg [11], Kirwan [16], and
Hitchin et al. [12] respectively. A careful examination of the argument used by Guillemin and Sternberg in [11] shows
that the following identity:

Tx M = Tx M0 ⊕ j (Tx (G · x)), ∀x ∈ M0, (1)

plays an essential role in carrying out the reduction for the complex structure, where j : T M → T M is the complex
structure of the Kähler manifold. Eq. (1) holds automatically when M0 = µ−1(0) is the level set of the momentum
map µ : M → g∗. Indeed this is exactly why the symplectic reduced space MG = M0/G inherits a complex structure.

A natural question arises as to whether there is a reduction procedure for a G-invariant generalized complex
structure which combines the above two special cases. More precisely, the question can be formulated as follows.

Let J be a generalized complex structure on a manifold M , which admits an action of a Lie group G preserving
J . Assume that M0 is a G-invariant smooth submanifold and the G-action on M0 is free and proper so that
MG := M0/G is a smooth manifold. Under what condition does J descend to a generalized complex structure
on MG?

In this paper, we describe a sufficient condition for such a reduction. Our condition comprises many well-known
examples as special cases including the above two important cases. In particular, even when J is an honest complex
structure, we derive some interesting condition for the reduction of the complex structure to hold, which seems to be
new.

Below let us describe the main idea of our approach briefly. There are several equivalent definitions of generalized
complex structures. A useful one for us is that a generalized complex structure on a manifold M is a pair of transversal
(complex) Dirac structures (E+, E−) on M which are complex conjugate to each other. In other words (E+, E−)

constitutes a (complex) Lie bialgebroid in the sense of [20] (see [19]). Roughly, our approach is as follows. Using
the inclusion map M0 → M , one may pull back E± to M0 to obtain a pair of complex conjugate Dirac structures
on M0. Since J is G-invariant, using the push forward map M0 → M0/G = MG , one obtains a pair of complex
conjugate Dirac structures E ′± on MG . To ensure that this gives rise to a generalized complex structure on MG , a
necessary condition is that E ′+ ∩ E ′− = 0. However, there is a subtlety. It is due to the difficulty that the pull back
and push forward of Dirac structures may not be smooth bundles. This forces us to impose some extra smoothness
assumptions. Indeed, in this paper we combine the pull back and push forward steps together to derive a sufficient
condition for the reduction. Note that Dirac reduction in the real context was first studied by Blankenstein (see [3,4])
and by Blankenstein and Ratiu for the singular case [5] in connection with the study of Hamiltonian mechanics.

One may easily check that if one starts with a symplectic structure, the reduced generalized complex structure is
still symplectic, while reduction of a complex structure is still a complex structure. Thus the two examples above are
indeed special cases of our general condition. As an application, we study reduction of generalized Kähler manifolds,
which generalizes the usual Kähler reduction [11,12,16]. Our paper only deals with the analogue of regular Kähler
reduction. See [15] for the singular case.

The paper is organized as follows. In Section 2, we recall some basic materials in Dirac geometry. In particular,
we describe the pull back and push forward constructions. In Section 3, we recall several equivalent definitions of
generalized complex structures. Section 4 is devoted to the study of reduction of generalized complex structures. As
corollaries, we consider several special examples including the reduction of usual complex structures, and the B-
transform of symplectic structures. In Section 5, we give an explicit description of the reduced generalized complex
structure in terms of the endomorphism JG of the vector bundle T MG ⊕ T ∗MG . In Section 6, as an application, we
investigate the reduction of generalized Kähler structures.
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As a special case when G = {∗}, our main results would lead to conditions which guarantee submanifolds of
a generalized complex manifold inheriting natural generalized complex structures. This topic was studied in detail
separately by Barton and the first author [1]. Note though that the first investigation of the submanifolds of a
generalized complex manifold was [2].

The results of this paper were announced at the conference “Poisson geometry” held in Trieste in July 2005, where
we learned that Bursztyn, Cavalcanti and Gualtieri [6] were working on a related subject. Subsequently, we noticed
that there have appeared several papers studying similar topics independently, including the one by Hu [14], the one
by Lin and Tolman [21] and the one by Vaisman [29]. It would be interesting to clarify the relations between all these
approaches.

Notation. We denote by VC the complexified V ⊗ C of a vector space V . Likewise, TCM and T ∗CM respectively
denote the tangent and cotangent bundles of a manifold M . If W is a vector subspace of V , W 0 denotes the annihilator
subspace of W inside V ∗. And if V is endowed with an inner product, W⊥ denotes the subspace of V orthogonal to
W . Finally, i denotes the imaginary number

√
−1.

2. Dirac geometry

In this section, we briefly review some basic ingredients of Dirac geometry which will be used in this paper. For
details, see [7,8].

Given a vector space V , we consider the direct sum V ⊕ V ∗ endowed with the inner product

〈X + ξ, Y + η〉 =
1
2

(ξ(Y )+ η(X)) , ∀X, Y ∈ V, ξ, η ∈ V ∗.

We denote by ρ and ρ∗ the natural projections of V ⊕ V ∗ onto V and V ∗ respectively. A Dirac structure on V is a
maximal isotropic subspace of V ⊕ V ∗ with respect to 〈·, ·〉. The set of linear Dirac structures on V is denoted by
Dir(V ).

Alternatively, a Dirac structure on a vector space can be described as follows. Let L ∈ Dir(V ). Since L is isotropic
with respect to 〈·, ·〉, there exists a natural skew-symmetric bilinear form Λ on L defined by

Λ(X + ξ, Y + η) = ξ(Y ) = −η(X), ∀X + ξ, Y + η ∈ L .

One easily checks that

Λ(X + ξ1, Y + η1) = Λ(X + ξ2, Y + η2), ∀X + ξi , Y + ηi ∈ L , i = 1, 2

and

Λ(X1 + ξ, Y1 + η) = Λ(X2 + ξ, Y2 + η), ∀X i + ξ, Yi + η ∈ L , i = 1, 2.

Hence, there exists a 2-form Ω on ρ(L) and a 2-form π on ρ∗(L) defined, respectively, by

Ω(X, Y ) = Λ(X + ξ, Y + η) = −π(ξ, η), ∀X + ξ, Y + η ∈ L .

Let X ∈ ρ(L). Then there is a ξ ∈ V ∗ such that X + ξ ∈ L . And we have Ω(X, Y ) = ξ(Y ),∀Y ∈ ρ(L), or,
equivalently, XyΩ = ξ|ρ(L), where ξ|ρ(L) denotes the restriction of ξ ∈ V ∗ to ρ(L). Thus

X + ξ ∈ L ⇐⇒

{
X ∈ ρ(L)

XyΩ = ξ|ρ(L).

Thus knowing the Dirac structure L on V is exactly the same as knowing the subspace ρ(L) of V and the 2-form Ω
on ρ(L). Similarly, L is equivalent to the pair (ρ∗(L), π).

Therefore, we have the converse: any subspace R ⊂ V endowed with a 2-form Ω defines a Dirac structure

{X + ξ |X ∈ R, ξ ∈ V ∗, XyΩ = ξ|R}

on V and any subspace R∗ ⊂ V ∗ endowed with a 2-form π defines a Dirac structure

{X + ξ |ξ ∈ R∗, X ∈ V, π(ξ, η) = −η(X),∀η ∈ R∗}

on V .
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Dirac structures can be pulled back and pushed forward using a linear map. Let V
φ
−→W be a linear map. Consider

a Dirac structure LW on W and its associated pair (ρ(LW ),ΩLW ). The 2-form ΩLW pulls back to the preimage
φ−1(ρ(LW )), yielding the pair (φ−1(ρ(LW )), φ∗ΩLW ). The Dirac structure on V associated with this new pair is
called the backward image of LW through φ and is denoted by Bφ(LW ).

Let W ∗
φ∗

−→ V ∗ be the dual of φ. Consider a Dirac structure LV on V and its associated pair (ρ∗(LV ), πLV ). The
pullback of the 2-form πLV to the preimage (φ∗)−1 (ρ∗(LV )) is equal to φπLV . The Dirac structure on W associated
with the pair ((φ∗)−1 (ρ∗(LV )) , φπLV ) is called the forward image of LV through φ and is denoted by Fφ(LV ).

One easily checks that

Bφ(LW ) = {X + φ∗ξ |X ∈ V, ξ ∈ W ∗, φX + ξ ∈ LW }

and

Fφ(LV ) = {φ(X)+ ξ |X ∈ V, ξ ∈ W ∗, X + φ∗ξ ∈ LV }.

Let M be a smooth manifold. A Dirac structure on M is a smooth subbundle L ⊂ T M ⊕ T ∗M which determines
a Dirac structure in Tm M ⊕ T ∗m M for each m ∈ M and whose space of sections is closed under the (skew-symmetric)
Courant bracket on Γ (T M ⊕ T ∗M) defined by

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ +
1
2

d(ξ(Y )− η(X)), ∀X, Y ∈ X(M), ξ, η ∈ Ω1(M).

In general, the Courant bracket does not satisfy the Jacobi identity. However, it does when restricted to the space Γ (L)

of sections of a Dirac subbundle L ⊂ T M⊕T ∗M . Then L → M inherits a Lie algebroid structure with the projection

L
ρ|L
−→ T M as anchor map and the restriction of the Courant bracket as Lie algebroid bracket [8].
Although the backward and forward images of a Dirac structure through the differential of a smooth map are always

pointwise Dirac structures, they are generally not constant rank smooth vector bundles. The remainder of this section
is devoted to the description of situations in which backward and forward images of Dirac structures are again Dirac
structures.

Definition 2.1. Let M
ϕ
−→ N be a smooth map. Two generalized tangent vectors X + ξ ∈ T M ⊕ T ∗M and

Y + η ∈ T N ⊕ T ∗N are said to be ϕ-related, denoted by X + ξ
ϕ
 Y + η, if ϕ∗X = Y and ϕ∗η = ξ . Clearly,

this notion extends to sections.

Lemma 2.2. Assume that σ i
M ∈ Γ (T M ⊕ T ∗M) and σ i

N ∈ Γ (T N ⊕ T ∗N ) satisfy σ i
M

ϕ
 σ i

N , where i = 1, 2. Then

[σ 1
M , σ 2

M ]
ϕ
 [σ 1

N , σ 2
N ],

where the bracket on the LHS refers to the Courant bracket on Γ (T M ⊕ T ∗M) while the bracket on the RHS refers
to the Courant bracket on Γ (T N ⊕ T ∗N ).

Proof. Write σ i
M = X i

+ ξ i and σ i
N = Y i

+ ηi , where X i
∈ X(M), ξ i

∈ Ω1(M), Y i
∈ X(N ) and ηi

∈ Ω1(N ) for
i = 1, 2. Since σ i

M and σ i
N are ϕ-related, ϕ∗X i

= Y i and ϕ∗ηi
= ξ i for i = 1, 2. Then

[σ 1
M , σ 2

M ] = [X
1, X2
] + LX1ξ

2
− LX2ξ

1
+

1
2

d
(
ξ1(X2)− ξ2(X1)

)
and

[σ 1
N , σ 2

N ] = [Y
1, Y 2
] + LY 1η

2
− LY 2η

1
+

1
2

d
(
η1(Y 2)− η2(Y 1)

)
.

Now

ϕ∗[X
1, X2
] = [ϕ∗X1, ϕ∗X2

] = [Y 1, Y 2
],
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and

ϕ∗(LY 1η
2) = ϕ∗(iY 1 dη2

+ diY 1η
2)

= ϕ∗iϕ∗X1dη2
+ ϕ∗d

(
η2(Y 1)

)
= iX1ϕ

∗dη2
+ d

(
ξ2(X1)

)
= iX1dξ2

+ diX1ξ
2

= LX1ξ
2.

Similarly, we have

ϕ∗(LY 2η
1) = LX2ξ

1.

Finally

ϕ∗d
(
η1(Y 2)− η2(Y 1)

)
= d

(
ξ1(X2)− ξ2(X1)

)
since

ϕ∗
(
η1(Y 2)

)
= ϕ∗

(
η1(ϕ∗X2)

)
= (ϕ∗η1)(X2) = ξ1(X2).

This concludes the proof. �

Recall that a generalized smooth subbundle of a vector bundle E → M is a subbundle V ⊂ E (whose fibers
may not be of constant ranks) such that for any vector v ∈ Vm there is a local smooth section s of V extending v,
i.e. s|m = v.

Proposition 2.3. (1) Let M
i
−→ N be an embedding and L N a Dirac structure on N. If, for any vector vm ∈

Bi(L N ), there exists a local smooth section s of L N defined in a neighborhood of i(m) ∈ N, such that

s|M ∈ Γloc(i∗T M ⊕ T ∗N |M ) and vm
i
 s|i(m), then Bφ(L N ) is a Dirac structure on M. In particular, the above

condition holds if L N |M ∩ (i∗(T M)⊕ T ∗N |M ) is a generalized smooth subbundle.
(2) Let M be a smooth manifold endowed with a proper and free action of a Lie group G. Let π denote the canonical

projection of M onto N := M/G. If L M is a G-invariant Dirac structure on M, and for any vector vn ∈ Fπ(L M ),
there exists a local smooth section s of L M defined in a neighborhood of a point m ∈ M in the fiber of π over n
such that s ∈ Γloc(T M ⊕ π∗(T ∗N )) and s|m

π
 vn , for instance when L M ∩ (T M ⊕ π∗(T ∗N )) is a generalized

smooth subbundle, then Fπ(L M ) is a Dirac structure on N.

Proof. (1). First, we observe that Bi(L N ) is well defined since i is injective. The assumption implies that any vector

vm ∈ Bi(L N ) admits a local section s̃ of Bi(L N ) such that s̃
i
 s, where s is a local smooth section of L N defined in a

neighborhood of i(m) ∈ N such that s|M ∈ Γloc(i∗T M ⊕ T ∗N |M ). Then s̃ must be a smooth local section. Therefore
Bi(L N ) is a smooth subbundle.

Now for any point m ∈ M , take a basis {vk
∈ Bi(L N )|m}k∈K . Let s̃k be a local section of Bi(L N ) through vk as

above. Then s̃k i
 sk , where sk is a local smooth section of L N . Thus [s̃k, s̃l

], ∀k, l, is still a local smooth section of
Bi(L N ) according to Lemma 2.2. Hence it follows that Bi(L N ) is Courant involutive.

For the second part, note that any element vm ∈ Bi(L N ) naturally induces an element vi(m) ∈ L N |M ∩

(i∗(T M)⊕ T ∗N |M ) such that vm
i
 vi(m). Thus the condition is satisfied since L N |M ∩ (i∗(T M)⊕ T ∗N |M ) is a

generalized smooth subbundle by assumption.
(2). First, we observe that Fπ(L M ) is well defined since L M is G-invariant. Now for any vector vn ∈ Fπ(L M ),

let s be a local section of L M defined in a neighborhood of a point m ∈ π−1(n) such that s ∈ Γloc(T M ⊕ π∗(T ∗N ))

and s|m
π
 vn . Let L ⊂ M be a slice through m transversal to the G-orbits. Since L M is G-invariant, there is a local

smooth section ŝ of L M such that ŝ|L = s|L . It is clear that ŝ ∈ Γloc(T M ⊕ π∗(T ∗N )). Hence it induces a local
section s̃ of Fπ(L M ) through vn . Therefore Fπ(L M ) is indeed a smooth subbundle. The rest can be proved like in
(1). �
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3. Generalized complex structures

Let V be a vector space. Consider a linear endomorphism J of V ⊕ V ∗ such that J 2
= −I and J is orthogonal

with respect to the inner product

〈X + ξ, Y + η〉 =
1
2

(ξ(Y )+ η(X)) , ∀X, Y ∈ V, ξ, η ∈ V ∗.

Such a linear map is called a linear generalized complex structure by Hitchin and Gualtieri [10,13]. The complexified
vector space (V ⊕ V ∗)⊗ C decomposes as the direct sum

(V ⊕ V ∗)⊗ C = E+ ⊕ E−

of the eigenbundles of J corresponding to the eigenvalues ±i respectively, i.e.,

E± = {(X + ξ)∓ iJ (X + ξ)|X + ξ ∈ V ⊕ V ∗}.

Both eigenspaces are maximal isotropic with respect to 〈·, ·〉 and they are complex conjugate to each other.
The following lemma is obvious.

Lemma 3.1. The linear generalized complex structures are in 1–1 correspondence with the splittings (V⊕V ∗)⊗C =
E+ ⊕ E− with E± maximal isotropic and E− = E+.

Now, let M be a manifold and J a bundle endomorphism of T M ⊕ T ∗M such that J 2
= −I , and J is orthogonal

with respect to 〈·, ·〉. In the associated eigenbundle decomposition

(TCM ⊕ T ∗CM) = E+ ⊕ E−,

if Γ (E+) is closed under the (complexified) Courant bracket, then E+ is a (complex) Dirac structure on M and one
says that J is a generalized complex structure [10,13]. In this case, E− must also be a Dirac structure since E− = E+.
Indeed (E+, E−) is a complex Lie bialgebroid in the sense of [20], in which E+ and E− are complex conjugate to
each other.

The following proposition gives two equivalent definitions of a generalized complex structure.

Proposition 3.2. A generalized complex structure is equivalent to any of the following:

(1) A bundle endomorphism J of T M ⊕ T ∗M such that J is orthogonal with respect to 〈·, ·〉 and J 2
= −I satisfying

[Je1, Je2] − [e1, e2] − J ([Je1, e2] + [e1, Je2]) = 0, ∀e1, e2 ∈ Γ (T M ⊕ T ∗M). (2)

(2) A complex Lie bialgebroid (E+, E−) such that its double is the standard Courant algebroid TCM ⊕ T ∗CM, and
E+ and E− are complex conjugate to each other.

Proof. (1) =⇒ (2) As above, E± are the (±i)-eigenbundles of J . Since Eq. (2) exactly means that

[e1 ∓ iJe1, e2 ∓ iJe2] ∈ Γ (E±), ∀e1, e2 ∈ Γ (T M ⊕ T ∗M),

it is equivalent to the involutivity of Γ (E±).
(2) =⇒ (1) Define J : TCM ⊕ T ∗CM → TCM ⊕ T ∗CM by setting J |E+ = iI and J |E− = −iI . Since E+ and E− are

complex conjugate to each other, we have J ē = Je,∀e ∈ TCM ⊕ T ∗CM . Therefore J must be the C-linear
extension of an endomorphism of T M ⊕ T ∗M . It is easy to check that J does indeed satisfy all the axioms
as in (1). �

The following are two standard examples [10,13].

Examples 3.3. (1) Let j be an almost complex structure on M . Then

J =

(
j 0
0 − j∗

)
is 〈·, ·〉-orthogonal and satisfies J 2

= −I . J is a generalized complex structure if and only if j is integrable.
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(2) Let ω be a non-degenerate 2-form on M . Then

J =

(
0 −ω−1

[

ω[ 0

)
,

where ω[ : T M → T ∗M is the bundle map X 7→ Xyω, is a generalized complex structure if and only if dω = 0,
i.e., ω is a symplectic 2-form.

4. Reduction using Dirac structures

Let M be a manifold, J a generalized complex structure on M and ϕ an action of a Lie group G on M preserving
the generalized complex structure J . In other words, we have a group homomorphism ϕ : G → Diffeo(M) : g 7→ ϕg
such that, ∀g ∈ G, the bundle endomorphism

T M ⊕ T ∗M
φg //

��

T M ⊕ T ∗M

��
M

ϕg // M

(defining the induced G-action φ on T M ⊕ T ∗M) commutes with J , where φg = ϕg∗⊕ϕ∗
g−1 . As in Section 3, by E±

we denote the (±i)-eigenbundles of J .
Let M0 be a G-invariant submanifold of M with a free and proper G-action so that the quotient space MG := M0/G

is a smooth manifold. Thus one has the following maps:

M
i
←↩ M0

π
�MG .

The main question that we investigate in this section is: under what condition does MG inherit a generalized
complex structure?

Since π is surjective and J is G-invariant, E ′± := Fπ (Bi(E±)) are well-defined, complex conjugate pointwise
Dirac structures on MG . It is simple to check that

E ′± = {π∗X + ξ ′|X ∈ TCM0, ξ
′
∈ T ∗CMG and ∃ξ ∈ T ∗CM st i∗X + ξ ∈ E± and π∗ξ ′ = i∗ξ}.

One possible way to ensure that E ′± are Dirac structures is to use Proposition 2.3 by considering the pull back
Dirac structure Bi(E±) and then the push forward structure Fπ (Bi(E±)). Below, however, we will combine these
two steps together, which enables us to obtain a stronger result.

In what follows, the foliation of M0 defined by the G-orbits will be denoted by F , and (TF)0 and (T M0)
0 will

denote the annihilators of TF and T M0 in T M along the submanifold M0 respectively.
It is clear that any element i∗Xm + ξi(m) ∈ T M0 ⊕ (TF)0 induces an element π∗Xm + ξ ′π(m) ∈ T MG ⊕ T ∗MG

where ξ ′π(m) is defined by i∗ξπ(m) = π∗ξ ′π(m). Indeed, one has a bundle map

T M0 ⊕ (TF)0 Π //

��

T MG ⊕ T ∗MG

��
M0 π

// MG

. (3)

The element i∗Xm + ξi(m) ∈ T M0 ⊕ (TF)0 is called a lift of π∗Xm + ξ ′π(m) ∈ T MG ⊕ T ∗MG . Note that, for a
given element vn ∈ T MG ⊕ T ∗MG , there exist many different lifts. Indeed, there is a choice of point m in the fiber
π−1(n) ⊂ M0 involved and Π has TF ⊕ (T M0)

0 as non-trivial kernel.

Proposition 4.1. The following assertions are equivalent.

(1) E ′+ ∩ E ′− = 0.
(2) (E+ + TCF) ∩ (TCM0 ⊕ (TCF)0) ∩ (E− + (TCM0)

0) ⊂ TCF ⊕ (TCM0)
0.
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(3) If z ∈ TCF ⊕ (TCM0)
0 with z = z+ + z− such that z± ∈ E± and z± ∈ TCM0 ⊕ (TCF)0, then

z± ∈ TCF ⊕ (TCM0)
0.

(4) J
(
TF ⊕ (T M0)

0
)
∩

(
T M0 ⊕ (TF)0

)
⊂ TF ⊕ (T M0)

0.

(5) J (T M0 ⊕ (TF)0) ⊂ (T M0 ⊕ (TF)0)+ J (TF ⊕ (T M0)
0).

(6) T M0 ⊕ (TF)0
= (T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0)+ (TF ⊕ (T M0)

0).
(7) TCMG ⊕ T ∗CMG = E ′+ + E ′−.

Proof. (1)⇔ (2) Note that

E ′+ ∩ E ′− = {X
′
+ ξ ′ ∈ TCMG ⊕ T ∗CMG |∃X± ∈ TCM0 and ξ± ∈ T ∗CM|M0

such that i∗X± + ξ± ∈ E±, π∗X± = X ′ and i∗ξ± = π∗ξ ′}.

Thus, in particular, we have

X± ∈ TCM0 ξ± ∈ (TCF)0

X− − X+ ∈ TCF ξ− − ξ+ ∈ (TCM0)
0.

Assume that there exists an element X ′ + ξ ′ 6= 0 in E ′+ ∩ E ′−. Then there exist i∗X± + ξ± ∈ E± with
X± ∈ TCM0 and ξ± ∈ T ∗CM|M0 as above. In particular,

i∗X− + ξ+ ∈ (TCM0 ⊕ (TCF)0).

Since TCF ⊂ TCM0, we get

i∗X− + ξ+ = (i∗X+ + ξ+)+ i∗(X− − X+) ∈ E+ + TCF .

On the other hand, we have

i∗X− + ξ+ = (i∗X− + ξ−)+ (ξ+ − ξ−) ∈ E− + (TCM0)
0.

Hence

i∗X− + ξ+ ∈ (E+ + TCF) ∩ (TCM0 ⊕ (TCF)0) ∩
(

E− + (TCM0)
0
)

.

Now X ′ + ξ ′ 6= 0 implies that i∗X− + ξ+ must not belong to TCF ⊕ (TCM0)
0. Thus, we have proved that

E ′+ ∩ E ′− 6= 0 implies

(E+ + TCF) ∩ (TCM0 ⊕ (TCF)0) ∩
(

E− + (TCM0)
0
)
6⊆ TCF ⊕ (TCM0)

0.

It is an easy matter to show that the converse is also true.
(2)⇒ (3) Take Â + f ∈ TCF ⊕ (TCM0)

0 and assume that Â + f = z+ + z− with z± ∈ E± and z± ∈
TCM0 ⊕ (TCF)0. Then z+ − Â = −z− + f is an element of the triple intersection of the LHS of (2).
Hence z± ∈ TCF ⊕ (TCM0)

0.
(3)⇒ (2) Any element z in the triple intersection can be written both as v + Â and as w + f for some v ∈ E+,

Â ∈ TCF , w ∈ E− and f ∈ (TCM0)
0. We have w − v = Â − f ∈ TCF ⊕ (TCM0)

0. The assumption (3)
implies that v, w ∈ TCF ⊕ (TCM0)

0. And, finally, z = v + Â ∈ TCF ⊕ (TCM0)
0.

(3)⇔ (4) Since TCM = E+ ⊕ E−, the only solution to z = z+ + z−, where z ∈ TCF ⊕ (TCM0)
0 and z± ∈ E±, is

z± = 1
2 (z ∓ iJ z). Since TCF ⊕ (TCM0)

0
⊂ TCM0 ⊕ (TCF)0, one has z± ∈ TCM0 ⊕ (TCF)0 if and only if

J z ∈ TCM0 ⊕ (TCF)0. Thus condition (3) can be rewritten as

z ∈ TCF ⊕ (TCM0)
0

J z ∈ TCM0 ⊕ (TCF)0

}
=⇒ J z ∈ TCF ⊕ (TCM0)

0

which is equivalent to (4).
(4)⇔ (5) Dualizing one condition by taking the annihilator with respect to 〈·, ·〉 and applying J to both sides yields

the other one.
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(5)⇔ (6) Since J 2
= −I , (5) is equivalent to

T M0 ⊕ (TF)0
⊂ J (T M0 ⊕ (TF)0)+ (TF ⊕ (T M0)

0).

Remembering that TF ⊕ (T M0)
0
⊂ T M0 ⊕ (TF)0, the equivalence with (6) is obvious.

(6)⇒ (7) Any element v ∈ TCMG⊕T ∗CMG has a lift ṽ ∈ TCM0⊕(TCF)0. By (6), there exists k ∈ TCF⊕(TCM0)
0

such that ṽ − k ∈ (TCM0 ⊕ (TCF)0) ∩ J (TCM0 ⊕ (TCF)0). Then the vectors 1
2 (I − iJ )(ṽ − k) and

1
2 (I + iJ )(ṽ− k) belong to E+ ∩ (TCM0 ⊕ (TCF)0) and E− ∩ (TCM0 ⊕ (TCF)0) respectively and are thus
the lifts of a pair of vectors v+ ∈ E ′+ and v− ∈ E ′− such that v = v+ + v−.

(7)⇒ (6) Let v̂ be a vector of T M0 ⊕ (TF)0. It is a lift of some vector v ∈ T MG ⊕ T ∗MG . Hence v can be
written as a sum v = v+ + v−, where v+ ∈ E ′+ and v− ∈ E ′−. Choose lifts ṽ+ ∈ E+ ∩ (TCM0 ⊕ (TCF)0)

and ṽ− ∈ E− ∩ (TCM0 ⊕ (TCF)0) of v+ and v− respectively. Then ṽ+ + ṽ− is a lift of v and belongs to
(TCM0 ⊕ (TCF)0) ∩ J (TCM0 ⊕ (TCF)0). And ṽ = Re(ṽ+ + ṽ−) is still a lift of v since v is a real vector.
Moreover ṽ ∈ (T M0⊕ (TF)0)∩ J (T M0⊕ (TF)0). Let k = v̂− ṽ. Then it follows that k ∈ TF ⊕ (T M0)

0

since both v̂ and ṽ are lifts of v. �

As an immediate consequence, we have

Corollary 4.2. The direct sum decomposition TCMG ⊕ T ∗CMG = E ′+ ⊕ E ′− holds if and only if any element of
T MG ⊕ T ∗MG has a lift in (T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0).

Proof. By Proposition 4.1, the direct sum decomposition holds if and only if

T M0 ⊕ (TF)0
= (T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0)+ (TF ⊕ (T M0)

0).

The result thus follows from the fact that ker Π = TF ⊕ (T M0)
0 and the surjectivity of Π , where Π is the map as in

Eq. (3). �

It is clear that any G-invariant (local) section σ̃ of T M0 ⊕ (TF)0
→ M0 induces a (local) section σ of

T MG ⊕ T ∗MG → MG . Here, G-invariant local sections must be understood in the following obvious sense:
σ̃ (m1) = φg · σ̃ (m2), for all m1, m2 ∈ U such that m1 = g · m2 for some g ∈ G. Hence, the bundle map (3)
induces a map

Γloc(T M0 ⊕ (TF)0)G
−→ Γloc(T MG ⊕ T ∗MG).

Definition 4.3. Let U be an open neighborhood in M . A local section σ̃ ∈ Γ ((T M ⊕ T ∗M)|U )G is said to be a lift of
a local section σ ∈ Γ ((T MG ⊕ T ∗MG)|π(U∩M0)) if σ̃|U∩M0 ∈ Γ ((T M0 ⊕ (TF)0)|U∩M0) and the diagram(

T M0 ⊕ (TF)0
)
|U∩M0

Π // (T MG ⊕ T ∗MG)|π(U∩M0)

U ∩ M0

σ̃|U∩M0

OO

π
// π(U ∩ M0)

σ

OO
(4)

commutes.

Lemma 4.4. Given any local sections σ1, σ2 ∈ Γloc(T MG ⊕ T ∗MG), assume that σ̃1, σ̃2 ∈ Γloc(T M ⊕ T ∗M)G are
any of their lifts. Then

(1) [σ̃1, σ̃2] ∈ Γloc(T M ⊕ T ∗M)G ,
(2) [σ̃1, σ̃2]|M0 ∈ Γloc(T M0 ⊕ (TF)0)G ,
(3) Π ◦ [σ̃1, σ̃2]|M0 = [σ1, σ2] ◦ π ,

where the Courant brackets are taken in Γloc(T M ⊕ T ∗M) and Γloc(T MG ⊕ T ∗MG) as is appropriate. In other
words, [σ̃1, σ̃2] is a lift of [σ1, σ2].
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Proof. (1) Assume that σ̃1 = X + ξ and σ̃2 = Y + η, where X, Y ∈ Xloc(M)G and ξ, η ∈ Ω1
loc(M)G . Then

[σ̃1, σ̃2] = [X, Y ] + LXη − LY ξ +
1
2

d(ξ(Y )− η(X))

is clearly G-invariant.
(2) First [X, Y ]|M0 ∈ X(M0) since X and Y belong to X(M0). Now,

(LXη)( Â)|M0 = X
(
η( Â)

)
|M0
− η([X, Â])|M0 , ∀A ∈ g.

Since η( Â)|M0 = 0 and X is tangent to M0, we have X (η( Â))|M0 = 0. Moreover, [X, Â] = 0 because X
is G-invariant. Hence (LXη)( Â)|M0 = 0. In other words, LXη|M0 ∈ (TF)0. Similarly, LY ξ|M0 ∈ (TF)0.
Finally, d(ξ(Y ) − η(X)) ∈ (TF)0. For ξ(Y ) − η(X) is a G-invariant function. Therefore we have [σ̃1, σ̃2]|M0 ∈

Γloc(T M0 ⊕ (TF)0)G .
(3) By σ̂1, σ̂2, we denote the sections of Γloc(T M0 ⊕ T ∗M0) obtained by considering the cotangent parts of σ̃1 and

σ̃2 as elements in T ∗M0. It is clear that σ̃i
i
 σ̂i and σ̂i

π
 σi . The conclusion follows from Lemma 2.2. �

Proposition 4.5. Assume that, given any element vn ∈ T MG ⊕ T ∗MG , there exists a local smooth section ζ of
(T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0)→ M0 around some point m ∈ π−1(n) such that ζ |m is a lift of vn . Then the
following assertions hold:

(1) The subbundles E ′± ⊂ TCMG ⊕ T ∗CMG are smooth.
(2) Any smooth (global) section of Γ (E ′±) locally admits a lift to a local section in Γ (E±)G .

Proof. (1) Since E ′± has constant rank, it suffices to prove that any element vn ∈ E ′± admits a smooth local section
passing through it. Let ζ be a local section of (T M0⊕(TF)0)∩ J (T M0⊕(TF)0) defined in an open neighborhood
V containing m with π(m) = n such that ζ |m is a lift of vn . Shrinking V if necessary, we can extend ζ to a local
section of T M ⊕ T ∗M → M , denoted by the same symbol ζ , and defined in an open neighborhood U of M0
such that U ∩ M0 = V . Now take a slice L in U through the point m and transversal to the G-orbits. Such a slice
always exists if U is taken small enough. Let σ̃ be the unique G-invariant section of Γ ((T M ⊕ T ∗M)|U ) such
that σ̃|L = ζ|L . Set τ̃ = 1

2 (I ∓ iJ ) ◦ σ̃ . It is clear that τ̃ ∈ Γ (E±|U ) is a local G-invariant smooth section such that
τ̃|U∩M0 ∈ Γloc(T M0 ⊕ (TF)0)G . Therefore, it induces a smooth section τ ∈ Γ (E ′

±|π(U )) through the element vn .

(2) Let ν ∈ Γ (E ′+) be any smooth section around the point n ∈ MG . Choose a basis {vi
n}i=1,...,k of E ′

+|n . Let τ i

be the local smooth section of E ′+ through the element vi
n constructed as in (1). Then {τ i

|n′}i=1,...,k is a basis of
E ′
+|n′ when n′ is in a sufficiently small neighborhood V around n. Thus ν =

∑
fiτ

i for some fi ∈ C∞(V ).

Let τ̃ i
∈ Γ (E±|U ) be the lift of τ i as in (1) defined on an open neighborhood U such that U ∩ M0 = π−1(V ).

Choose f̃i ∈ C∞(U )G such that f̃i |M0∩U = π∗ fi . Such f̃i always exist if U is chosen sufficiently small. Then
ν̃ =

∑
f̃i τ̃

i is a lift of ν in Γ (E±)G . �

We are now ready to state the main theorem of this paper.

Theorem 4.6. Let M be a manifold endowed with an action of a Lie group G. Let J be a G-invariant generalized
complex structure on M. And let M0 be a G-invariant submanifold of M where the G-action is free and proper so
that the quotient MG = M0/G is a manifold. Assume that, given any element vn ∈ T MG ⊕ T ∗MG , there exists a
local smooth section ζ of (T M0⊕ (TF)0)∩ J (T M0⊕ (TF)0)→ M0 around some point m ∈ π−1(n) such that ζ |m
is a lift of vn . Then there is an induced generalized complex structure JG on MG .

Proof. This follows from Corollary 4.2, Proposition 4.5 and Lemma 4.4. �

Lemma 4.7. The hypothesis of Proposition 4.5 is satisfied when

(T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0) is a generalized smooth subbundle (5)

and

J (TF ⊕ (T M0)
0) ∩ (T M0 ⊕ (TF)0) ⊂ TF ⊕ (T M0)

0. (6)



M. Stiénon, P. Xu / Journal of Geometry and Physics 58 (2008) 105–121 115

Proof. For any vector vn ∈ T MG ⊕ T ∗MG , according to Proposition 4.1 and Corollary 4.2, Eq. (6) implies the
existence of a lift ζm of vn in (T M0⊕ (TF)0)∩ J (T M0⊕ (TF)0). Since (T M0⊕ (TF)0)∩ J (T M0⊕ (TF)0)→ M0
is a generalized smooth subbundle, it admits a local section ζ around m in M0 which extends ζm . �

Theorem 4.8. Let M be a manifold endowed with an action of a Lie group G, and J a G-invariant generalized
complex structure on M. Assume that M0 is a G-invariant submanifold of M where the G-action is free and proper
so that the quotient MG = M0/G is a manifold. Then there is an induced generalized complex structure on MG if the
hypotheses (5) and (6) of Lemma 4.7 are satisfied.

Theorem 4.8 has several important consequences.

Corollary 4.9. Under the same hypothesis as in Theorem 4.8, if moreover

J (TF ⊕ (T M0)
0) = TF ⊕ (T M0)

0, (7)

then MG admits an inherited generalized complex structure.

Proof. Since J is orthogonal and T M0 ⊕ (TF)0
= (TF ⊕ (T M0)

0)⊥〈·,·〉 , Eq. (7) implies that J (T M0 ⊕ (TF)0) =

T M0 ⊕ (TF)0. Hence (T M0 ⊕ (TF)0
∩ J (T M0 ⊕ (TF)0)) = T M0 ⊕ (TF)0 is smooth. And Eq. (6) is satisfied

since TF ⊕ (T M0)
0
⊂ T M0 ⊕ (TF)0. The result follows from Theorem 4.8. �

Remark 4.10. This is exactly what happens in the case of Marsden–Weinstein reduction [23]. In this case, J =

(
0 −ω−1

[

ω[ 0
), and M0 = µ−1(0), where ω ∈ Ω2(M) is a symplectic form and µ : M → g∗ is an equivariant momentum

map: Âyω = d〈µ, A〉,∀A ∈ g. One checks easily that J (TF) = (T M0)
0, and therefore J (T M0)

0
= TF since

J 2
= −I . Hence the conditions in Corollary 4.9 are satisfied.

More generally one sees that these conditions hold when J is a symplectic structure twisted by a B-field.

Corollary 4.11. Let (M, ω) be a symplectic manifold endowed with an action of a Lie group G preserving the
symplectic structure. Assume that there exists a G-invariant closed 2-form B on M and an equivariant momentum
map µ : M → g∗.

Âyω = d〈µ, A〉, ∀A ∈ g. (8)

Assume that 0 is a regular value of µ and the G-action is free and proper. Thus M0 = µ−1(0) is a G-invariant
submanifold of M and the quotient MG = M0/G is a smooth manifold. If i∗B, where i : M0 → M is the inclusion,
is basic with respect to the G-action, then the generalized complex structure

J =

(
1 0
B[ 1

) (
0 −ω−1

[

ω[ 0

) (
1 0
−B[ 1

)
on M induces a generalized complex structure on MG .

Proof. Note that the assumption i∗B being basic implies that T M0⊕ (TF)0 is stable under the bundle map (
1 0
±B[ 1 )

of T M ⊕ T M∗. By the discussion in Remark 4.10, we know that T M0 ⊕ (TF)0 is also stable under (
0 −ω−1

[

ω[ 0
). The

conclusion thus follows from Corollary 4.9. �

Here is yet another important situation.

Corollary 4.12. Under the same hypothesis as in Theorem 4.8, if moreover

J (TF ⊕ (T M0)
0) ∩ (T M0 ⊕ (TF)0) = 0, (9)

then MG admits an inherited generalized complex structure.
In particular, if J = (

j 0
0 − j∗) is a usual complex structure, the above relation is nothing else than the

Guillemin–Sternberg condition [11]:

T M = T M0 ⊕ j (TF). (10)
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In this case, the induced generalized complex structure is still a complex structure.

Proof. Since Eq. (9) implies Eq. (6), Condition (5) of Proposition 4.1 holds. Together with Eq. (9), this implies that

J (T M0 ⊕ (TF)0) ⊂ (T M0 ⊕ (TF)0)⊕ J (TF ⊕ (T M0)
0).

Since TF ⊕ (T M0)
0
⊂ T M0 ⊕ (TF)0, the projection of J (T M0 ⊕ (TF)0) onto T M0 ⊕ (TF)0 parallel to

J (TF ⊕ (T M0)
0) is equal to (T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0). Therefore, we have

J (T M0 ⊕ (TF)0) =
(

T M0 ⊕ (TF)0
)
∩ J

(
T M0 ⊕ (TF)0

)
⊕ J (TF ⊕ (T M0)

0),

which implies that (T M0 ⊕ (TF)0) ∩ J (T M0 ⊕ (TF)0) must be a smooth subbundle. Thus the conclusion follows
from Theorem 4.8.

The second part of Corollary 4.12 can be easily checked and is left for the reader. �

Corollary 4.13. Under the same hypothesis as in Theorem 4.8, if moreover there exists a Riemann metric g such that
(TF⊕ (T M0)

⊥)⊥⊕ (TF⊕ (T M0)
⊥)0 is J -stable, then MG admits an inherited generalized complex structure. Here

⊥ refers to the orthogonal subspace in T M with respect to the metric g.
In particular, if (M, g, j) is a G-invariant Hermitian manifold such that TF ⊕ (T M0)

⊥ is j -stable, then MG
admits an inherited complex structure.

Proof. Since L :=
(
TF ⊕ (T M0)

⊥
)⊥
⊕

(
TF ⊕ (T M0)

⊥
)0

is J -stable, one has L ⊂ (T M0 ⊕ (TF)0) ∩ J (T M0 ⊕

(TF)0). Let Q be the projection of (T M ⊕ T ∗M)|M0 onto (TF)⊥ ⊕ ((T M0)
⊥)0 parallel to TF ⊕ (T M0)

0. Then,
since TF ⊕ (T M0)

0
⊂ T M0 ⊕ (TF)0, one has

Q(T M0 ⊕ (TF)0) ⊂
(

TF ⊕ (T M0)
⊥

)⊥
⊕

(
TF ⊕ (T M0)

⊥

)0
= L .

Now fix an element v of T MG ⊕ T ∗MG , and let ṽ ∈ T M0 ⊕ (TF)0 be a lift of v. Then Q(ṽ) is a lift of v in L .
The bundle L being smooth, there exists a section s of L extending Q(ṽ). Hence the hypothesis of Proposition 4.5 is
satisfied and the result follows from Theorem 4.6.

In particular, if J = (
j 0
0 − j∗), where j preserves TF ⊕ (T M0)

⊥, and J is orthogonal with respect to g, then the

smooth subbundle L of T M0 ⊕ (TF)0 is indeed J -invariant. �

Remark 4.14. Note that the induced complex structure on the quotient space in Kähler reduction can be considered
as a special case of the above situation.

Corollary 4.15. Let (M, j) be a complex manifold endowed with an action of a Lie group G such that j is G-
invariant. Let M0 be a G-invariant submanifold of M, where the G-action is free and proper so that the quotient
MG = M0/G is a manifold. Assume that, for any Xn ∈ Tn MG , ξn ∈ T ∗n MG , there exists a point m ∈ M0 with
π(m) = n and local sections X̃ ∈ Γloc(T M0 ∩ jT M0), ξ̃ ∈ Γloc((TF + jTF)0) such that π∗(X̃ |m) = Xn and
π∗ξn = ξ̃ |m . Then MG admits an inherited generalized complex structure, which is still a complex structure.

In particular, the above conditions are satisfied if T M0∩ jT M0 and TF+ jTF are generalized smooth subbundles
of T M0.

Proof. The above hypothesis is the projection of the hypothesis of Proposition 4.5 onto the tangent and cotangent
bundles. �

5. Description of JG

This section is devoted to an explicit description of the induced generalized complex structure JG under the
assumption that the hypothesis of Theorem 4.6 holds.

Let B denote the vector bundle T M0 ⊕ (TF)0 and B⊥ its 〈·, ·〉-orthogonal subbundle: TF ⊕ (T M0)
0. As in

Corollary 4.2, we know that every vector in T MG ⊕ T ∗MG has a lift in B ∩ J B. In other words, the restriction of the
bundle map Π (as in Eq. (3)) to B ∩ J B is surjective. Then Π|B∩J B induces a G-invariant vector bundle map
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B∩J B
ker(Π|B∩J B )

��

Ξ // T MG ⊕ T ∗MG

��
M0

π // MG

which is indeed a pullback bundle. Note that ker|B∩J B = B⊥ ∩ J B. Now, by Corollary 4.2 and Proposition 4.1, we
have J B⊥ ∩ B ⊂ B⊥. Moreover since B⊥ ⊂ B, we thus have J B⊥ ∩ B ⊂ B⊥ ∩ J B. Since J 2

= −I , it follows that
J B⊥ ∩ B = B⊥ ∩ J B. It is simple to see that B⊥ ∩ J B is J -stable. Therefore, J|B∩J B induces a bundle isomorphism

B∩J B
B⊥∩J B

��

J ′ // B∩J B
B⊥∩J B

��
M0

id // M0

whose G-invariance implies that it factorizes through Ξ so that it induces a bundle map JG as the inherited generalized
complex structure

T MG ⊕ T ∗MG

��

JG // T MG ⊕ T ∗MG

��
MG

id // MG .

Thus we obtain the following

Theorem 5.1. Under the same hypothesis as for Theorem 4.6, the induced generalized complex structure JG on MG
can be described by the following commutative diagram:

T M ⊕ T ∗M
J // T M ⊕ T ∗M

B ∩ J B

OO

��

J // B ∩ J B

OO

��
B∩J B

B⊥∩J B

Ξ

��

J ′ // B∩J B
B⊥∩J B

Ξ

��
T MG ⊕ T ∗MG

JG // T MG ⊕ T ∗MG

Hence, if ṽ ∈ B ∩ J B is a lift of v ∈ T MG ⊕ T ∗MG , then J ṽ ∈ B ∩ J B is a lift of JGv ∈ T MG ⊕ T ∗MG .

Remark 5.2. In [9], Crainic showed that a generalized complex structure J is an endomorphism of the generalized
tangent bundle T M⊕ T ∗M built out of a Poisson bivector π , an endomorphism N of the tangent bundle and a 2-form
σ :

J =

(
N π]

σ[ −N∗

)
with N 2

+ π]σ[ = − idn, which satisfy some compatibility conditions resembling those given by Kosmann-
Schwarzbach, Magri and Morosi [17,22] in their definition of Poisson Nijenhuis structures (see also [18,28]). It would
be interesting to investigate the meaning of each component for the reduction JG .
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6. Reduction of generalized Kähler structures

The generalized Kähler structure as introduced by Hitchin [13] and Gualtieri [10] consists of a pair of commuting
generalized complex structures (J1, J2) such that 〈J1 J2 ·, ·〉 is positive definite.

Example 6.1. If (M, ω, j) is a usual Kähler manifold, then

J1 =

(
0 −ω−1

[

ω[ 0

)
J2 =

(
j 0
0 − j∗

)
defines a generalized Kähler structure.

As in Section 4, we assume that M0 is a G-invariant submanifold of M where the G-action is free and proper so that
the quotient MG = M0/G is a manifold. Since T M⊕T ∗M decomposes as the direct sum of four different subbundles
with each being constituted of the common eigenvectors of J1 and J2 determined by a given pair of eigenvalues, it is
natural to ask whether the reduction procedure outlined in Section 4 can be applied to J1 and J2 simultaneously to get
a generalized Kähler structure on the quotient MG .

Let us introduce some notation. By E± and E± we denote the ±i-eigenbundles of J1 and J2 respectively. Let
BC = B ⊗ C. For any subbundle V of TCM ⊕ T ∗CM , Φ(V ) denotes the subbundle Π (V ∩ BC) of TCMG ⊕ T ∗CMG ,
where Π is the bundle map as in Eq. (3).

Proposition 6.2. Assume that (J1, J2) is a G-invariant Kähler structure.

(1) The following two statements are equivalent:

TCMG ⊕ T ∗CMG = Φ(E+ ∩ E+)+ Φ(E+ ∩ E−)+ Φ(E− ∩ E+)+ Φ(E− ∩ E−) (11)

and

Π (B ∩ J1 B ∩ J2 B) = T MG ⊕ T ∗MG ,

where, as in Section 5, B = T M0 ⊕ (TF)0.
(2) If the above condition is satisfied, then the above sum is direct and

Φ(E± ∩ E±) = Φ(E±) ∩ Φ(E±).

Proof. (1) ⇒ Take v ∈ T MG ⊕ T ∗MG . By assumption, it can be decomposed as
v = Π (ṽ++)+Π (ṽ+−)+Π (ṽ−+)+Π (ṽ−−),

where ṽ±± ∈ E± ∩ E± ∩ BC. Let
ṽ = ṽ++ + ṽ+− + ṽ−+ + ṽ−− .

Then ṽ ∈ BC and Π (ṽ) = v. Hence ṽ is a lift of v. Moreover,
J1ṽ = i(ṽ++ + ṽ+− − ṽ−+ − ṽ−−) ∈ BC and J2ṽ = i(ṽ++ − ṽ+− + ṽ−+ − ṽ−−) ∈ BC.

Hence, ṽ ∈ J1 BC and ṽ ∈ J2 BC since J 2
1 = J 2

2 = −I . Therefore Re(ṽ) ∈ B ∩ J1 B ∩ J2 B is a lift of
v ∈ T MG ⊕ T ∗MG .

⇐ Conversely, if any v ∈ T MG ⊕ T ∗MG has a lift ṽ in B ∩ J1 B ∩ J2 B, one has

v = Π
(

1
2
(I − iJ1)

1
2
(I − iJ2)ṽ

)
+

(
1
2
(I − iJ1)

1
2
(I + iJ2)ṽ

)
+

(
1
2
(I + iJ1)

1
2
(I − iJ2)ṽ

)
+

(
1
2
(I + iJ1)

1
2
(I + iJ2)ṽ

)
.

Eq. (11) thus follows.
(2) Finally, since

Φ(E± ∩ E±) ⊆ Φ(E±) ∩ Φ(E±), (12)

the condition

TCMG ⊕ T ∗CMG = Φ(E+ ∩ E+)+ Φ(E+ ∩ E−)+ Φ(E− ∩ E+)+ Φ(E− ∩ E−) (13)

implies that
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TCMG ⊕ T ∗CMG = Φ(E+) ∩ Φ(E+)+ Φ(E+) ∩ Φ(E−)+ Φ(E−) ∩ Φ(E+)+ Φ(E−) ∩ Φ(E−) (14)

and

TCMG ⊕ T ∗CMG = Φ(E+)+ Φ(E−), TCMG ⊕ T ∗CMG = Φ(E+)+ Φ(E−).

Applying Proposition 4.1 to J1 and J2, we obtain

Φ(E+) ∩ Φ(E−) = 0 and Φ(E+) ∩ Φ(E−) = 0.

This implies that the sums in (13) and (14) must be direct. Hence Eq. (12) implies that Φ(E± ∩ E±) =

Φ(E±) ∩ Φ(E±). �

Theorem 6.3. Let (M, J1, J2) be a G-invariant generalized Kähler manifold. Assume that M0 is a G-invariant
submanifold of M where the G-action is free and proper so that the quotient MG = M0/G is a manifold. If, for
any vn ∈ T MG ⊕ T ∗MG , there exists a point m ∈ M0 and a local smooth section ζ of B ∩ J1 B ∩ J2 B → M0 around
m such that Π (ζ |m) = vn , then there exists an inherited generalized Kähler structure (J1G , J2G) on MG such that

Π (J1w) = J1GΠ (w)

Π (J2w) = J2GΠ (w)
∀w ∈ B ∩ J1 B ∩ J2 B. (15)

In particular, this condition holds if

• B = B ∩ J1 B ∩ J2 B + B⊥ and
• B ∩ J1 B ∩ J2 B is a generalized smooth subbundle.

Proof. According to Theorem 4.6, the generalized complex structures J1 and J2 induce a pair of generalized complex
structures J1G and J2G on MG satisfying Eq. (15). Let E ′± and E ′± denote their ±i-eigenbundles respectively. By
Proposition 6.2, we have

TCMG ⊕ T ∗CMG =

(
E ′+ ∩ E ′+

)
⊕

(
E ′+ ∩ E ′−

)
⊕

(
E ′− ∩ E ′+

)
⊕

(
E ′− ∩ E ′−

)
,

which implies that J1G and J2G commute.
Finally, for v ∈ T MG ⊕ T ∗MG , choose w ∈ B ∩ J1 B ∩ J2 B. By Eq. (15), we have

〈J1G J2Gv, v〉 = 〈J1G J2GΠ (w),Π (w)〉 = 〈Π (J1 J2w),Π (w)〉 = 〈J1 J2w, w〉,

where the last equality follows from the fact that Π |B preserves the scalar products. It thus follows that 〈J1G J2G ·, ·〉

is positive definite. This concludes the proof. �

The following corollary is to Theorem 6.3 what Corollary 4.13 is to Theorem 4.6.

Corollary 6.4. Let (M, J1, J2) be a G-invariant generalized Kähler manifold. Assume that M0 is a G-invariant
submanifold of M, where the G-action is free and proper so that the quotient MG = M0/G is a manifold. Assume
that there exists a Riemann metric g such that (TF ⊕ (T M0)

⊥)⊥ ⊕ (TF ⊕ (T M0)
⊥)0 is stable under both J1 and

J2; then MG admits an inherited generalized complex structure.

Proof. The proof is exactly the same as for Corollary 4.13 except that, here, since L is both J1- and J2-invariant, one
has L ⊂ B ∩ J1 B ∩ J2 B. Then the conclusion follows from Theorem 6.3. �

As proved by Gualtieri [10], a generalized Kähler structure (J1, J2) on a manifold M is fully characterized by
a quadruple (g, b, J+, J−), where g is a Riemannian metric, b is a 2-form and J± are two (integrable) complex
structures on M , compatible with g, such that

db(X, Y, Z) = dω±(J±X, J±Y, J±Z), ∀X, Y, Z ∈ X(M)

with ω± ∈ Ω2(M) defined by 〈ω±X, Y 〉 = ±g(J±X, Y ). These data explicitly determine the pair of generalized
complex structures

J1 =
1
2

(
1 0
b 1

) (
J+ + J− −(ω−1

+ + ω−1
− )

ω+ + ω− −(J ∗+ + J ∗−)

) (
1 0
−b 1

)
J2 =

1
2

(
1 0
b 1

) (
J+ − J− −(ω−1

+ − ω−1
− )

ω+ − ω− −(J ∗+ − J ∗−)

) (
1 0
−b 1

)
.
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Here, for simplicity, we identify a 2-form with its associated bundle map.
Using exactly this same g and applying Corollary 6.4, we are led to the main result of this section, which generalizes

the usual Kähler reduction [11,12,16].

Theorem 6.5. Let (M, J1, J2) be a G-invariant generalized Kähler manifold. Assume that M0 is a G-invariant
submanifold of M, where the G-action is free and proper so that the quotient MG = M0/G is a manifold. Let
(g, b, ω+, ω−) be the quadruple associated with a generalized Kähler structure (J1, J2) as in [10]. If ω±(TF) =

(T M0)
0 and (TF)⊥ ∩ T M0 is stable under ω−1

± b, then MG inherits a generalized Kähler structure.

Proof. It is sufficient to check that the conditions in Corollary 6.4 are satisfied.
First, since ω± are antisymmetric and non-degenerate, ω±(TF) = (T M0)

0 implies ω±(T M0) = (TF)0.
Second, ω±(TF) = (T M0)

0 also implies ω±(TF⊥) = (T M⊥0 )0 because J± are isometric with respect to g.
Therefore,

ω±

(
TF ⊕ (T M0)

⊥

)⊥
= ω±(TF⊥ ∩ T M0) =

(
T M⊥0

)0
∩ (TF)0

=

(
TF ⊕ (T M0)

⊥

)0
. (16)

Finally, one easily checks that the image of any

v + f ∈
(

TF ⊕ (T M0)
⊥

)⊥
⊕

(
TF ⊕ (T M0)

⊥

)0

under

J1 ± J2 =

(
1 0
b 1

) (
J± −ω−1

±

ω± −J ∗±

) (
1 0
−b 1

)
lies in

(
TF ⊕ (T M0)

⊥
)⊥
⊕

(
TF ⊕ (T M0)

⊥
)0

if and only if both Eq. (16) and the condition ω−1
± b((TF)⊥∩T M0) ⊂

(TF)⊥ ∩ T M0 hold. �

Note that ω±(TF) = (T M0)
0 is satisfied when M0 is the zero level set of an equivariant momentum map. Thus

the theorem above reduces to the usual Kähler reduction when M is a Kähler manifold [11,12,16].
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